
THEORETICAL STUDY OF THE THERMODYNAMIC PROPERTIES 

OF NITROGEN AT HIGH TEMPERATURES AND PRESSURES 
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A theoretical analytical equation of state is derived and used to compute new 
thermodynamic data for nitrogen at high tempratures and pressures. 

Reliable thermodynamic data of technologically important materials at high temperatures 
and pressures are necessary in many fields of science and technology. For example, the 
design and use of high-pressure hypersonic gasdynamical devices requires thermodynamic data 
for nitrogen~at pressures up to 2000 MPa and at temperatues up to 2500~ However for 
several reasons experimental P-v-T data on nitrogen for T > 300~ and P > 100 MPa are very 
scarce, and experimental data on other thermodynamic properties are practically nonexistent 
in this temperature and pressure region. 

Table 1 lists the relevant experimental papers, the intervals of the thermodynamic 
parameters, the method used, and the author's estimate of error in the data reported. 

Figure 1 shows the deviation 60* between the experimental values of the density ob- 
tained in [i, 3, 6, 7] and the values given in [4]. The deviations are given in the 
temperature interval 373.15 to 673.15~ for the pressures 200, 400, 600, 800, and 1000 MPa. 
It is evident from Fig. 1 that the disagreement significantly exceeds the authors' estimates 
of error and reaches 1.6%. Comparison of the data of [6] and [7] at temperatures from 
673.15 to 1273.150K shows that the disagreement tends to increase with increasing tempera- 
ture and reaches 3.5% for T = 1273.15~ The disagreement is mainly due to the extreme 
difficulty of carrying out experiments at high temperatures and pressures. Above T = 1800~ 
and P = 550 MPa experimental data does not exist. 

The situation has stimulated the development of computational and theoretical methods 
of determining the thermodynamic properties of nitrogen in the dense fluid region. Among 
the papers in this field are the works of Jacobsen and Stewart [8], Zykov and Sevast'yanov 
[9], Kuznetsov [i0], and Younglove [ii]. 

Jacobsen and Stewart obtained an equation of state for nitrogen in the Strowbridge form 
with 32 empirical constants, which were found by a least squares fit to a large quantity of 
experimental data, including the data of [i, 4]. The resulting equation of state was then 
used to compute tables of the thermodynamic properties of nitrogen from the triple point up 
to T = 2000~ for P ! MPa, and up to T = 1200~ for P < 1000 MPa. The equation of state 
given in [8] closely approximate the experimental data-used in the fit, however its extra- 
polation to higher densities is dubious, since it is purely empirical. 

Zykov and Sevast'yanov considered a semiempirieal equation of state of nitrogen for 
T = 300 to 1300~ and P = 100-1200 MPa. It contains theoretically motivated terms involving 
the constants e and o for a Lennard-Jones (12-7) potential, along with an empirical correc- 
tion based on an analysis of the data of [3, 4, 6]. The resulting equation of state [9] 
leads to a satisfactory description of the P-v-T data for T > 300~ but its extrapolation 
into the dense fluid region is unlikely to be satisfactory, in our opinion, since the use of 
a two-parameter Lennard-Jones potential at high temperatues and pressures and the use of the 
second virial coefficient to account for attractive forces is not completely justified. 

The thermodynamic properties of nitrogen in the region 300 ! T ! 2500~ and 0 < @ < 300 
kg/m s were calculated in [i0]; this corresponds to a maximum pressure of P m 300 MPa at T = 
300 MPa at T = 2500~ The equation of state was a virial expansion limited to the first 
*6p= [(oil---p[4])/ p[41]'100,%. 
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TABLE i. List of Experimental Papers on Nitrogen at 
High Temperatures and Pressures 

Author(s) and publ. 
year 

Michels, Wouters, and 
De Boer (1936) 

Tsiklis (1951) 
Tsiklis and Polvakov 
Robertson,Babb ~1969) 
Voronov. Pitaevskaya. 
and B{levich (1969) 

Malbrunot,Vodar (1973 
Antanovich, Plotnikov 

(1977) 

Param- [ Range 
eters -- 
studied AT, K AP, MPa 

P, v, T 273--423] 

P, v, T 323--423 i 
P, v, T 295--673 
P, v. T 308--673 
Speed 298--448 
sound " 
P, v, T 473--1273 
P, v, T 1400--1800 

I 

I 

20--304 

658--1013 
152--1013 
150--1000 
20--405 

76--494 
100--800 

Method 
used 

PV 

D 
D 

PV-PC 
Pulse 

PC 
D 

Author's Lit. 
]estim~_e ~ sot~e 
l~ r~ 

0,02 I1] 

0,3 [21 
0,3 [3 l 
0,3 [41 
o,3 [51 

0,3 [6 l 
1,2 [71 

i 

Note: PV) variable volume piezometer; PC) constant 
volume piezometer; D) displacement. 

--1 ~,--6" 

--3 +,--8 
-~ ,-9 ~ 
--5 o--lO 

~/,ss 
,7,~F5 ~7915 57~,15 eza15 T 

~p 

~a 2 

o,4 , 
@ 

0 " 

o 

-0,8 
.~ i.. 

2OO 

o o //9 ~ 

~ �9 a - - 2  
o - - 3  

�9 A--@ 

~ --5 
m--$ 

o -- 7 

I _L_____L__~ 7-- , 

600 /000 74'00 T 

Fig. 1 Fig. 2 

Fig. i. Deviations between the experimental values of the density 
of nitrogen, obtained by different authors, and the data of [4] for 
the following pressures: i) 200 MPa [i]; 2) 200 [3]; 3) 200 [6]; 4) 
200 [ 7 ] ;  5) 400 [ 3 ] ;  6) 400 [ 6 ] ;  7) 400 [ 7 ] ;  8) 600 [ 3 ] ;  9) 800 [ 3 ] ;  
i0) i000 MPa [3]. 8p, %; T, K. 

Fig. 2. Deviations between the values of the density of nitrogen 
calculated from equation (2) and the data of other authors for the 
following pressures: i) 200 MPa [9]; 2) 200 [i0]; 3) 200 [Ii]; 4) 
600 [9]; 5) 600 [ii]; 6) i000 [9]; 7) i000 MPa [Ii]. 

five coefficients, which were calculated theoretically using a Lennard-Jones (12-6) potential. 
This equation of state becomes incorrect for densities exceeding the critical density of 
Pc = 313.1 kg/m 3. 

The tables of thermodynamic properties of nitrogen calculated by Younglove [ii] were 
based on the equation of state obtained in [8]. The region of temperature and pressure in 
these tables was expanded up to 1800~ and I000 MPa. Therefore these tables involve a 
larger extrapolation of the empirical equation of state then in the tables of [8]. 

Comparison of the densities calculated using the equations of state of [9-11] in the 
temperature interval T = 300-1200~ and pressure interval P = i00-i000 MPa shows that 
they are consistent with one another to within an error of 0.8% or less (see Fig. 2). This 
is not surprising, since the use of the same experimental data often leads to good agreement 
of the thermal parameters. Above 800~ the consistency between the calculated values [9-11] 
of the caloric properties is also quite acceptable. However, at lower temperatures and 
higher densities there is serious disagreements between them (see Figs. 3 and 4). For 
example, at T = 300~ the disagreement-between the calculated values of the heat capacity 
at constant pressure in [9] and [ii] is about 36%, and for the speed of sound it is about 
9%. We note that this situation is typical for other materials in the dense fluid state as 
well, although most of them have been studied to a lesser degree than nitrogen. Hence 
further study is needed in the direction of reliable, theoretically based methods of 
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Fig. 3. Deviation between the calculated heat capacity at constant 
pressure for nitrogen and the data of other authors for the pres- 
sures given in Fig. 2. 

Fig. 4. Deviation between the calculated values of the speed of 
sound and the data of other authors for the following pressures: 
i) 202.65 MPa [5]; 2) 200 [9]; 3) 200 [i0]; 4) 200 [ii]; 5) 600 
[9]; 6) 600 [ii]; 7) i000 [9]; 8) i000 MPa [ii] 6w, %. 

calculating the thermodynamic parameters of materials in the region of the state variables 
where experiments are either difficult or impossible to perform with current methods. 

As a model of a nonpolar, pure material in the dense fluid state, we consider a system 
of N spherically symmetric particles inside a volume V. The total pair interaction potential 
U(r) can be written in the form: 

U (r) = ff~S (r) --1- �9 (r), (i) 

where ~RS(r) is the arbitrary interaction potential of a reference system (RS) and corres- 
ponds to the repulsive part of the total pair potential; @(r) is a perturbing attractive 
potential, chosen in the form of a square well. 

Thermodynamic perturbation theory was used by the present authors [12] to obtain a 
general analytical equation of state for a system of this kind, including terms to second 
order in i/kT. The equation of state (in terms of the compressibility factor z = P/(pkT)) 
can be written in the form 

z = ZRs (x) -~ (e/kT) z, (~, x) + (e/kT)Zz2 (~, x). ( 2 )  

In this equation x = (~/6)po 3, X = R/o, where p : N/V is the number density of particles in 
the system; o is the range of the potential ~Rs(r). The functions z1(l, x) and z2(k, x) 
have the following forms: 

LC 
Z z 

z~ = 0,5x (D~ -- 8%D -k- hzl,  

z Mc = 2x [~,3 (xD2 _ Dx) + 0,25D 2 (D1 - -  0,5)] -~- AZ2 MC, 

= 2x [L ~ (xD~ 01) - -  O, 125 (xD~ - -  D1D2 - -  xD1D~)] + hz Lc, 

Azl = 12x (G1 q- xG~), 

Az~ c =: 6x [(O1 - -  xD2) 61 + xD~G;], 

hz  Lc = 6x [(D1 - -  xD~,) G1-1- (3xD1 --i xZD~) G; -t- xZD1G~I ; 

(3) 

here 

Da = [O (zRSX)/Ox]F~; D~ = --OD{Ox; D~ = ODJOx; G~")= O~G{Ox~; 

G l depends on the radial distribution function gRs(L, x) for the reference system: 

G~(L, x) = ~ LZ[gRs(L , x ) - -  1]dL, (4) 
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where L = r/o. The superscripts MC and LC in the expressions for z2(X , x) refer to the 
approximations of macroscopic and local compressibilities in the thermodynamic perturbation 
theory [12]. 

The reference system is shown to be a system of soft spheres with an exponential repul- 
sive potential; the so-called Born-Maier potential: 

~Rs(r) = y exp (--r/6),  ( 5 )  

w h e r e  ~ and 6 a r e  p o s i t i v e  c o n s t a n t  w i t h  t h e  d i m e n s i o n s  o f  e n e r g y  and l e n g t h ,  r e s p e c t i v e l y .  
This potential is a good model for materials consisting of spherically symmetric or nearly 
spherically symmetric molecules in the dense fluid state [13, 14]. 

It was shown in [15] that the equation of state of a system with the interaction poten- 
tial (5) can be replaced with the equation of state for hard spheres with a temperature- 
dependent diameter a: 

where in ~ is Euler's constant. 

a (T) = 8 ln(o~y/leT), ( 6 )  

Choosing the Percus-Yevick approximation for hard spheres as  the simplest and the most 
valid theoretically, a simple analytical approximation for Gz(%, x) was obtained in [12], 
which can be used to present the equation of state (2) with the functions z z and z 2 given 
by (3) in a form convenient for the calculation of any of the thermodynamic properties of 
dense fluids. The example of nitrogen was used to illustrate the application of the resulting 
equation of state to the calculation of thermodynamic properties of real, pure materials at 
high temperatures and pressures [12, 16]. 

However it is known that the Percus-Yevick approximation for hard spheres is not suffi- 
ciently accurate. It was shown in [17] that this approximation inadequately describes the 
properties of hard sphere at high densities. For example, at x m 0.5 the error reaches 
6z ~ 6% in comparison with the molecular-dynamics calculations for a system of hard spheres. 
These calculations also show [18] that there are significant deficiencies in the radial 
distribution function g(L, x) in the Percus-Yevich approximation. For these reasons we 
attempt to obtain an equation of state in the form (2) using the Carnahan-Starling approxi- 
mation [17] for a system of hard spheres: 

ZRS(X) = (1 + x + x2--X3) / (1--x)3.  ( 7 )  

Equation (7) lacks the deficiencies of the Percus-Yevick approximation mentioned above, is 
quite simple, and accurately describes the results of the molecular-dynamics calculations 
for a system of hard spheres. 

The radial distribution function gRS(L, x) corresponding to the approximation (7) was 
calculated using the method suggested in [18]: 

gRs(L, x ) =  gpy (L~, x ~ ) +  g~(L, x~), ( 8 )  

where gpy(Lw, Xw) is the Percus-Yevick radial distribution function, calculated in the usual 
way [19]: 

xw = x ( 1 - - O ,  O625x), L w = L / (1 - -O ,O625x / /a ,  

gl (L, x~) = [[ (x~)/L] exp {- -24[  (x~)(L - -  1)/[xm~ (x~)] } cos { 24[ (x~)(L - -  1 ) / [x~  (x~)l }, ( 9 )  

where 

= 0,, 5x~ (t - -  0,7117x~ - -  O, 114x~ )/(1 - -  x~) ~, 

~ )  = (t + 0,5x~)/(1 - -  x~) z. 

The integral GI(X , x) for the Carnahan-Starling approximation was evaluated numerically 
using the method described in [12] in the interval of reduced densities 0.025 < po 3 < i.i00 
with the granularity A(po 3) = 0.025 and for X = 2.0. 

The resulting values {Gzx(x)i} were approximated with the help of the program ORFU 
[20] which provides a statistically optimum choice of regression functions frcm a given set of 
functions. The result has the form 
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TABLE 2. Coefficients of (i0) for ~ = 2.0 

i n i a i i 

--4,297094.10-~ 
--2,162878.10o 

1,797249-101 
6,397568.10 l 

--1,129693.103 
5,454744.103 

--1,247009.104 

8 
9 

10 
11 
12 
13 

n i  a i 

8 1,153326.104 
13 --6,835093.104 
16 9,364344.105 
18 ~6,060627.106 
19 9,529928.106 
20 --4,457087.10~ 

m 

Ol~ (x) = ~ aix "i, ( 10 ) 
i = l  

w h e r e  n i > 0.  The c o e f f i c i e n t s  { a i }  and  {n i}  a r e  g i v e n  i n  T a b l e  2 .  The mean s q u a r e  e r r o r  
i n  t h e  a p p r o x i m a t i o n  was  ~0 .032%.  S u b s t i t u t i n g  ( 7 )  f o r  ZRS(X) and  ( 1 0 )  f o r  G1 i n t o  ( 3 ) ,  
and  p e r f o r m i n g  some s i m p l e  r e d u c t i o n s ,  we o b t a i n  an  a n a l y t i c a l  e q u a t i o n  o f  s t a t e  i n  t h e  f o r m  
( 2 )  f o r  t h e  r e f e r e n c e  s y s t e m  i n  t h e  C a r n a h a n - S t a r l i n g  a p p r o x i m a t i o n .  

E x p l i c i t  e x p r e s s i o n s  f o r  t h e  q u a n t i t i e s  a p p e a r i n g  i n  ( 3 )  a r e :  

D~ = (1 - - ~ [ ( 1  q- 2x)Z-- 4~--[- ~] ,  

D~ = 4 ( 1 - - ~ 3 ( 2 - ] - S x - - ~ ) / [ ( l q - 2 ~ 2 - - 4 ~ q - - ~ ]  z, ( 1 1 )  

D~ = - -  4 (1 - -  ~2~x (x)/[(1 q-- 2 ~  2 - -  4 ~  q-- ~]3, 

~ (x) = 17 --}- 82x -1- 39~  - -  80x 3 -6 77~  - -  30~  -}- 3~;  

Azl = 12xB1, Az~ c = 6x (DAB1 - -  xD~Bo); 

Az Lc = 6x (D1B2 - -  xD~BO, 
( 1 2 )  

Be = ai x~i, BI= .(n~+ 1)aix "i, B 2 =  ~__,(ni+ 1)Zaix hi. 
~ 1  i = l  ~ 1  

Calculations show that the functions of (3) with the corrections (12) accurately (to 
within 0.1% in z I and 1% in z2) reproduce the corresponding quantities obtained in thermo- 
dynamic perturbation theory (with the help of a numerical integration of the radial distri- 
bution function gRS(L, x)) in the region of reduced densities 0 < po 3 ! 1.0. These results 
show that the analytical equation of state can be used up to densities close to the density 
of the liquid-solid phase transition, provided that (e/kT) << i. 

The equation of state contains three potential parameters, two of which appear in ex- 
pression (6) for a(T). For convenience in practical calculations we write (6) in the form 

~(T) = C - - q l n T ,  ( 1 3 )  

where C = 61n(~y/k), q = 6. The third parameter is g/k, the depth of the potential well. 
The parameters C, q, and e/k must be determined from the experimental data for nitrogen. 
This was done using the P-v-T data of [i, 4] as the most reliable and self-consistent. A 
total of 204 points were chosen in the temperature and density intervals T = 298.15-673.15 
~ and P/Pc = 0.8-3.5. 

The equation of state (2) is obviously nonlinear in the parameters C and q and linear 
in e/k. Therefore the program FUMILI [21] was used to determine these parameters. The pro- 
gram uses a nonlinear normal regression scheme to estimate the parameters. The results are: 
C = 4.47 ! 0.03 ~, q = 0.178 ! 0.005 ~/K, e/k = 49,4 ! 0.4 K. The errors of the parameters 
were determined for a significance level of 0.05. 

With the help of well-known thermodynamic relations, the equation of state (2) was used 
to obtain analytical expressions (in the form of functions of T and P) for the following 
quantities: the enthalpy, entropy, heat capacities at constant volume and pressure, speed 
of sound, adiabatic Joule-Thomson coefficient, coefficient of volume expansion, thermal 
pressure coefficient, the adiabatic index, and the fugacity. In addition, analytical 
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TABLE 3. Deviations Between the 
Densities Calculated from the 
Equation of State (2) and the 
Experimental data of [i] 

P, MPa 

50 
100 
150 
200 
250 
300 

~p, % 

T=323,15 K 

d-0,39 
--1,17 
--1,18 
--0,86 

T : 3 7 3 ,  15 

-~-0,92 
--0,54 
--0,78 
--0,65 
--0,39 

K T = 4 2 3 , I  5 K 

+1,13 
- -0 ,04  
--0,39 
--0,37 
--0,21 
+0,03 

TABLE 4. Deviations Between the Densities Calculated 
from the Equation of State (2) and the Experimental 
Data of [4] 

6p, 14 
P, MPa 

T==308,15 K T -  373 ,15  K T = 4 7 3 , 1 5  K T = 5 7 3 , 1 5  K T--673,  15 I,( 

1,50 
200 
250 
400 
600 
800 

1000 

--1,27 
--0,89 
--0,49 
+o,35 
-4-0,66 
+0,45 
+0,01 

--0,79 
--0,55 
@0,06 
--o,38 
4.-,0,30 
-FO ,o0 

--0,54 
--0,35 
+o ,o2 
+0,19 
@0,11 
--0,15 

- -0 ,17  
0,00 

+o ,o8 
--0,03 
--0,22 

--0,09 
+0,11 
--0,02 
--0,16 
~0,40 

expressions were found for the derivatives of all of these functions with respect to the 
parameters C, q, and E/k. These derivatives can be used, along with the covariance matrix, 
to calculate the errors in all of these quantities at any point on the thermodynamic surface. 
The expressions obtained in this way were used to calculate the thermodynamic properties of 
nitrogen and the corresponding errors on a computer. For input values of T and P, the value 
of p was calculated by solving (2) using Newton's method. The values of the ideal gas func- 
tions were calculated using the expressions of [22]. 

The thermodynamic properties of nitrogen were calculated in the temprature interval T = 
300-2000~ and pressure interval P = 100-1200 MPa, and were computed with the data of other 
authors. Tables 3 and 4 present the deviations between the calculated values of the density 
pC and the experimental values oe [i, 4]: 

6p = [(pc-- p~ /~ l .  10o, %. 

Comparing Tables 3 and 4 and Fig. i, it is evident that 6p does not exceed the maximum of 
the deviations between the experimental data of different authors. 

Figures 2 through 4 show the relative deviations between the values of certain thermo- 
dynamic quantities calculated using our equation of state (fes) and the data of other authors 
(f): 

8f = [ ( f e s _  f)lf]. 1o0, %. 

Values of ~f are given in the temperature interval T = 300 to 1800~ for three pressures: 
P = 200, 600, and i000 MPa. 

We see from Fig. 2 that the deviations in the density between our values and the data of 
other authors (for the intervals of the parameters studied experimentally) are normally less 
than the total errors in the experimental data (see Fig. i). The deviations between the 
calculated values of the heat capacity at constant pressure and the data of other authors 
(Fig. 3) normally do not exceed 5%, and this is consistent with the author's estimates of 
error in [Ii]. An exception is the data of [9] on the isotherms 300 and 400~ which appa- 
rently are not very accurate. As seen from Fig. 4, the calculated values of the speed of 
sound are too low on average by 1.5% both in the experimental and calculated regions of the 
parameters. The cause of these systematic deviations is difficult to explain without addi- 
tional experimental information. 

1447 



Therefore the theoretical equation of state obtained here for the dense fluid state can 
be used not only to compute the thermodynamic functions of nitrogen and to determine confi- 
dence intervals for their errors, but can also be used to test the extrapolation possibilities 
of the empirical equations of state. Hence it would be of interest to extend this method of 
calculating thermodynamic properties to other pure materials with nearly spherically symme- 
tric molecules in the temperature region from the Boyle temperature to the thermal dissocia- 
tion temperature, and in the density interval from Pc to 4-5p c. 

NOTATION 

N, number of paticles in the system; V, volume; U(r), total pair interaction potential; 
~RS(r), interaction potential for the reference system; @(r), perturbing potential; P, 
pressure; T, temperature; p, density; k, Boltzmann constant; z, compressibility factor; a, 
effective hard sphere diameter; R width of the potential well; e, depth of the potential 
well; gRS, radial distribution function for the reference system; Cp, heat capacity at 
constant pressure; w, speed of sound. 
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